
Parity Filter Automata

Alexander Tan
Supervisor: Professor Nalini Joshi

An essay submitted in partial fulfillment of
the requirements for the

Science Summer Research Program

School of Mathematics and Statistics

University of Sydney

February 2021

Contents

Introduction . iv

Chapter 1. Overview of cellular automata . 1
1.1. Elementary cellular automata . 1
1.2. Two dimensional cellular automata . 4

Chapter 2. Parity filter automata . 7
2.1. Particles . 8
2.2. Periodicity . 8
2.3. Collisions . 9
2.4. Splitting . 9

Chapter 3. Existing analytic results . 11
3.1. Fast rule theorem . 11
3.2. Stability . 13
3.3. 1-periodic particles . 13
3.4. General evolution theorem . 16

Chapter 4. Basic strings and a generalized parity filter rule 20
4.1. Alternative characterization . 20
4.2. Periodicity . 26
4.3. Displacement . 27
4.4. Connection to the original parity filter rule 28

Bibliography . 30

iii

Introduction

A cellular automaton is a discrete mathematical system in which simple
rules often lead to complex emergent behaviour. A typical cellular automa-
ton consists of cells arranged in a line or grid, each of which has a value
chosen from a finite set. At each time step, the value of every cell is up-
dated simultaneously based on an update rule involving the values of the
cell and its neighbouring cells at the previous time iteration.

Cellular automata are often used to model complex physical phenom-
ena, such as those arising in physics, chemistry and biology. For instance,
cellular automata were used to model the large-scale spatial patterns of nat-
urally occurring mussel beds [14], to model HIV infections [5], and to
model reaction-diffusion equations [4]. Cellular automata have also been
used as random number generators [12], and to create cryptographic ci-
phers [11].

In Chapter 1 we provide a brief introduction to different types of cellu-
lar automata. A particular class of cellular automata known as parity filter
automata are introduced in Chapter 2, and some existing results about parity
filter automata are summarised in Chapter 3. In Chapter 4 we present orig-
inal results regarding the behaviour of certain initial configurations under a
class of generalized parity filter automata.

iv

CHAPTER 1

Overview of cellular automata

In this chapter we provide a brief overview of different kinds of cellular
automata.

1.1. Elementary cellular automata

Elementary cellular automata are one of the simplest examples of cel-
lular automata, and have been studied extensively in [13]. Here, each cell
takes on value 0 or 1, and the cells are arranged in a one dimensional line.
The update function of a cell is dependent on the cell itself and its two
immediate neighbours to the left and right.

More formally, if we denote the value of a cell at position i and time t
as ati ∈ {0, 1}, then the value of the cell at the next time iteration t + 1 is
given by

(1.1) at+1
i = φ(ati−1, a

t
i, a

t
i+1)

for some function φ : {0, 1}3−→{0, 1}with the requirement that φ(0, 0, 0) =
0.

Example 1.2. Consider the function φ given in Table 1.1.

ati−1, a
t
i, a

t
i+1 1, 1, 1 1, 1, 0 1, 0, 1 1, 0, 0 0, 1, 1 0, 1, 0 0, 0, 1 0, 0, 0

at+1
i 0 0 0 1 1 1 1 0

TABLE 1.1. An update function φ with canonical code 30.

Successive applications of this rule to a simple initial configuration is
shown in Figure 1.1. White squares denote cells with value 0, and black
cells denote cells with value 1. Time flows downwards, so that the top row
represents the initial configuration. In this example, the initial configuration
consists of a single cell with value 1, with the rest of the cells taking value
0.

1

2 1. OVERVIEW OF CELLULAR AUTOMATA

FIGURE 1.1. Rule 30.

The function φ is described fully by the bottom row of Table 1.1. For
this particular example, reading off the bottom row yields the string 00011110,
which, when read in binary, is the decimal number 30. This number is called
the canonical code or rule, and elementary cellular automata are often re-
ferred to by their canonical code instead of an explicit update function φ.

In general there are 256 possible canonical codes identifying different
elementary cellular automata rules. This can be observed by noting there
are two possible values for each entry in the bottom row of Table 1.1, and
23 = 8 entries, giving a total of 28 = 256 unique tables.

What is remarkable is that despite the simplicity of the rules locally,
complex emergent behaviour often arises. Rules 30 and 45 can be used to
create random number generators [12], and rule 110 has been proven to be
Turing complete [3].

1.1.1. Neighbourhood extension. Elementary cellular automata can
easily be extended to involve more complex rules. For example, we may
choose to have the update function φ depend on a larger neighbourhood of
radius r surrounding the cell, i.e.

(1.3) at+1
i = φ(ati−r, a

t
i−r−1, · · · , ati, · · · , ati+r),

again with the requirement that φ(0, · · · , 0) = 0. Here, the update neigh-
bourhood is a strip of 2r + 1 cells centered around ati.

Note that even with r = 2, there are already 232 ≈ 4.2 × 1010 pos-
sible rules. As it can be infeasible to study such a large number of rules,
interesting subsets of these rules are often studied instead. One such sub-
set are the class of “totalistic” rules [10] in which the value of a cell de-
pends on the sum of its neighbouring cells. For the case r = 2, this sum
is an integer ranging from 0 to 10. The update function is then a function

1.1. ELEMENTARY CELLULAR AUTOMATA 3

φ : {0, 1, 2, · · · , 10} −→ {0, 1}. There are 211 = 2048 different possible
totalistic rules.

Example 1.4. An example of an update function φ based on a totalistic rule
for r = 2 is given in Table 1.2.

ati−1 + ati + ati+1 10 9 8 7 6 5 4 3 2 1 0
at+1
i 0 0 0 0 1 0 1 0 0 1 0

TABLE 1.2. The update function corresponding to rule 82
in the class of totalistic cellular automata with update radius
r = 2.

We can again devise a canonical code for this class of automata by read-
ing from the bottom row of Table 1.2 and interpreting it as binary, which in
this case produces the decimal number 82.

Iterations of rule 82 applied to a simple initial configuration are shown
in Figure 1.2.

FIGURE 1.2. Rule 82 in the class of totalistic cellular au-
tomata with update radius r = 2.

1.1.2. Configuration extension. We may also choose to increase the
number of states for each cell, say ati ∈ {0, 1, · · · , k − 1}. Again, with this
extension, the number of rules grows very large, so we study totalistic rules
instead.

4 1. OVERVIEW OF CELLULAR AUTOMATA

Example 1.5. A simple example is to consider rules k = 3 states. Of course
we could also extend the neighbourhood radius as well, but for the sake of
example, let us consider the simple case of having the radius r = 1. As each
cell has 3 neighbours each having value 0, 1, or 2, the total neighbour sum
is an integer between 0 and 6. The update function φ is then a function of
the form φ : {0, 1, 2, 3, 4, 5, 6}−→{0, 1, 2}. An example of such a function
φ is given in Table 1.3.

ati−1 + ati + ati+1 6 5 4 3 2 1 0
at+1
i 0 2 1 2 1 1 0

TABLE 1.3. The update function corresponding to rule 633
in the class of totalistic cellular automata with k = 3 states.

To assign a canonical code, we read off the bottom row in Table 1.3 and
interpret it in base 3, which in this case results in the decimal number 633.

Iterations of rule 633 applied to a simple initial configuration are shown
in Figure 1.3. To display three states visually, we use white to denote cells
with value 0, grey for cells with value 1, and black for cells with value 2.

FIGURE 1.3. Rule 633 in the class of totalistic cellular au-
tomaton with k = 3 states.

1.2. Two dimensional cellular automata

All the ideas about one-dimensional cellular automata can be extended
to higher dimensions. For the sake of visualization, in this section we study
the two dimensional case. A natural generalization into 2D is for cells to be
laid out in a square grid, as opposed to a line.

In a square grid, there are two common ways of defining a cell’s neigh-
bourhood: the 4-neighbourhood (Von Neumann neighbourhood) or the 8-
neighbourhood (Moore neighbourhood), as illustrated in Figure 1.4.

1.2. TWO DIMENSIONAL CELLULAR AUTOMATA 5

(A) A cell (blue) and its 8-
neighbourhood (red).

(B) A cell (blue) and its 4-
neighbourhood (red).

FIGURE 1.4

Again, due to the large number of possible rules in 2D cellular automata,
totalistic rules are often studied instead.

1.2.1. Game of Life. One of the best known 2D cellular automata is
Conway’s Game of Life [2]. In Life, each cell has one of two configurations,
typically referred to as “dead” or “alive”. The 8-neighbourhood is used, and
cells are updated to the following totalistic rule.

(1) An alive cell with exactly two or three alive neighbours stays alive
in the next iteration. Otherwise it dies as if by underpopulation or
overpopulation.

(2) A dead cell with exactly three alive neighbours becomes alive in
the next iteration, as if by reproduction. Otherwise it remains dead.

Example 1.6. Figure 1.5 shows the evolution of a pattern called a “light-
weight spaceship”. Black cells represent “alive” cells and white cells repre-
sent “dead” cells. All cells outside the diagram are assumed to be “dead”.

The lightweight spaceship displays periodic behaviour in the sense that
after 4 iterations, the original pattern reappears 2 units to the right.

(A) t = 0. (B) t = 1. (C) t = 2. (D) t = 3. (E) t = 4.

FIGURE 1.5. Four iterations of the “lightweight spaceship”
pattern in Life.

6 1. OVERVIEW OF CELLULAR AUTOMATA

1.2.2. Other tessellations. Two-dimensional cellular automata do not
necessarily have to be aligned in a square grid. Cellular automata on other
tilings such as triangular and hexgonal tilings, or even asymmetrical tilings
such as pentagonal tilings can be studied. For example, totalistic rules
similar to Life have been studied on triangular, pentagonal, and hexagonal
tilings in [1].

The notion of neighbourhood needs to be extended to these tilings. As
an example, two different ways of define triangular neighbours are shown
in Figure 1.6.

FIGURE 1.6. A cell (blue) and two possible ways of defin-
ing its neighbourhood (red) in a triangular tiling.

CHAPTER 2

Parity filter automata

Filter automata are a variation of cellular automata, first proposed in [8].
In a filter automaton, the value of a cell is dependent on both the values of
cells from the previous time iteration, and the newly computed values of
cells in the current time iteration. Specifically, for one-dimensional filter
automata, cells are governed by the rule

(2.1) at+1
i = φ(at+1

i−r , · · · at+1
i−1, a

t
i, · · · , ati+r),

with the restriction that φ(0, · · · , 0) = 0.
It is further assumed that the update rule is applied left to right and that

there are only finitely many non-zero cells to the left.
As in Chapter 1.1, the parameter r is called the “radius” and specifies

the size of the update window.
A one-dimensional filter automaton known as a “parity rule” filter au-

tomaton is studied in [8], in which cells are governed by the rule

(2.2) at+1
i =

{
1, if St+1

i ≥ 2 and is even,
0, otherwise,

where

(2.3) St+1
i :=

i−1∑
n=i−r

at+1
n +

i+r∑
n=i

atn.

Some examples of this rule applied to various initial configurations are
shown in Figure 2.1. Following the diagrams in Chapter 1, white denotes
a cell with value 0 and black a cell with value 1. Again, time flows down-
wards so that the top row is the initial configuration and subsequent rows
represent successive iterations of the parity filter rule.

7

8 2. PARITY FILTER AUTOMATA

(A) (B)

FIGURE 2.1. Examples of the parity filter rule with r = 3.

In the remainder of this chapter, some terminology regarding the parity
filter rule is established.

2.1. Particles

If there are enough 0 cells separating two regions of nonzero cells, then
these two regions evolve independently of each other. We call these two
independent regions “particles”. See Figure 2.2 for an example.

The exact condition for when we may consider a configuration to con-
tain multiple particles is given in Remark 3.6.

FIGURE 2.2. Two particles moving independently of each
other (r = 3).

Hence, we often study the behaviour of a single particle, with the impli-
cation that the studied behaviour generalizes to configurations consisting of
multiple particles, provided that they do not interfere with each other.

2.2. Periodicity

A particle may be periodic in the sense that the pattern of cells repeats
after a fixed number of time iterations, possibly displaced by some number
of units. The displacement d of a particle with period p can be measured by
taking the difference between the index of the leftmost 1 at time t + p and
time t. We then define the speed of the particle to be

(2.4) s :=
d

p
.

2.4. SPLITTING 9

Example 2.5. Consider the two particles in Figure 2.2. The left particle has
period p = 3, displacement d = 5, and speed s = 5

3
. The right particle has

period p = 2, displacement d = 2, and speed s = 1.

It is shown in [6] that the index of the leftmost 1 in any particle, exclud-
ing the particle 1 0 · · · 0︸ ︷︷ ︸

r

moves left by d units every time iteration for some

d satisfying

(2.6) 0 ≤ d ≤ r − 1.

Hence, for a particle with given period p, we can upper bound its displace-
ment over its period by p(r − 1).

2.3. Collisions

Two particles travelling at different speeds may collide in the sense that,
from a certain point in time t1, the two particles no longer evolve indepen-
dently of each other.

A natural question is then to ask about the behaviour when two parti-
cles collide. Many collisions under the parity filter rule are solitonic in the
sense that the original identity of the two particles are preserved following
a collision. An example of such a collision is given in Figure 2.3.

FIGURE 2.3. Solitonic collision of two particles (r = 3).

The behaviour here is similar to the behaviour of solitary wave solu-
tions of nonlinear wave equations such as the Kortweg-de Vries equation, as
noted in [9]. When two solitary waves travelling at different speeds collide
with one another, the waves emerge from the collisions unchanged except
for a phase shift. This is just like the collision of the two particles in Fig-
ure 2.3. In fact, a direct connection has been made between nonlinear wave
equations and a different class of filter automata that also supports solitonic
collisions [9].

2.4. Splitting

In some cases, a single particle may split into multiple independent par-
ticles if it evolves to a configuration where there is a long enough strip of
contiguous 0 cells. An example of splitting is given in Figure 2.4.

10 2. PARITY FILTER AUTOMATA

FIGURE 2.4. Splitting of a particle into two (r = 3).

A precise condition for when splitting occurs is given in Remark 3.6.

CHAPTER 3

Existing analytic results

Much work has been done in providing analytic results for the parity
filter rule [6, 7]. These results are analytic in the sense that they explic-
itly describe the behaviour of the parity filter rule, as opposed to providing
statistical properties observed through computer simulations.

A summary of the results in [6, 7] is presented in this chapter.

3.1. Fast rule theorem

An alternative characterization of the parity filter rule, known as the Fast
Rule Theorem is presented in [6]. This result provides a much simpler way
to compute successive iterations of the parity filter rule. To state the result,
we first require the following definition.

Definition 3.1 (Box indices). Let the configuration at of the parity filter
automaton at time t be given by

at = · · · 0 a0 a1 a2 · · ·

where a0 = 1.
The box indices corresponding to at are defined using the following

procedure:

(1) The index of the first 1 is a box index (i.e. i := 0 is a box index).
(2) Indices following i in multiples of r + 1 are also box indices (i.e.

i, i+(r+1), i+2(r+1), · · · are box indices) up to and including
the first box index that is followed by r consecutive 0s.

(3) If there are no more 1s to the right of the last box index, the process
stops. Otherwise the process continues again from step 1 with i
defined to be the next 1 to the right of the latest box index.

Example 3.2. A configuration and its box indices, computed for r = 3 is
given in Figure 3.1. It is assumed that there are only 0 cells on either side
of the given configuration.

11

12 3. EXISTING ANALYTIC RESULTS

0 4 8 15 19 23

FIGURE 3.1. A configuration with its box indices high-
lighted in blue (r = 3).

The computation is performed as follows. Let the leftmost 1 (black cell)
have index 0. Then by step 1, index 0 is a box index. Index 0+ (r+1) = 4
is also a box index by step 2, and so is index 4+(r+1) = 8. Since there are
r+1 = 4 consecutive 0 cells following index 8, index 12 is not a box index
by step 3. Instead, the process starts form step 1 with the next leftmost 1
which occurs at index 15. From here, indices 19 and 23 are box indices due
to step 2. As there are no more 1s to the right of index 23, the process stops,
and the set of box indices are {0, 4, 8, 15, 19, 23}.

The box indices play an important role in the Fast Rule Theorem which
we now state below.

Theorem 3.3 (Fast Rule Theorem).
LetBt denote the box indices corresponding to the configuration at time

t. Then the parity filter rule is equivalent to the rule

(3.4) at+1
j−r =

{
atj if j 6∈ Bt

atj if j ∈ Bt

where x := x+ 1 (mod 2) is the complement of x.

This result can be proven by inducting over the cell indices. For a de-
tailed proof, we refer the reader to [6].

Put simply, the configuration at time t + 1 can be computed by taking
the configuration at time t, flipping the values of any cells falling on a box
index, then shifting everything r units to the left.

Example 3.5. We return to the configuration in Example 3.2. By the Fast
Rule Theorem, the next configuration is found by flipping the values of cells
that fall in a box index, namely cells 0, 4, 8, 15, 19, 23. Then, everything is
shifted r = 3 units to the left. This is apparent in Figure 3.2.

FIGURE 3.2. A configuration followed by one iteration of
the parity filter rule (r = 3).

3.3. 1-PERIODIC PARTICLES 13

Remark 3.6. The final box index computed in step 2 which is followed by r
consecutive 0s, marks the end of a particle. If there are any nonzero cells to
the right of the r consecutive 0s, then these cells form part of a new particle
that evolves separately from the particle to the left of the 0s.

This provides the precise condition for when two particles may be con-
sidered as independent particles, and when a single particles splits into mul-
tiple independent particles.

The Fast Rule Theorem provides the framework for many other analytic
results which are presented below.

3.2. Stability

Often, it only makes sense to study cellular automata rules that are sta-
ble, in the sense that a finite number of nonzero cells evolve to a finite
number of nonzero cells in subsequent time iterations. For instance, com-
puter simulations are easy to perform if a rule is stable. Using the Fast Rule
Theorem, one can easily show that the parity filter rule is indeed stable [6].

Theorem 3.7. Parity filter automata are stable.

Proof. If there are a finite number of 1s at time t then the set of box indices
Bt is finite. Ignoring displacement, the configuration at time t + 1 differs
from the configuration at time t only over the finite set Bt hence it also
consists of a finite number of 1s.

Since the initial configuration t = 0 contains a finite number of 1s, the
statement holds by induction. �

3.3. 1-periodic particles

The Fast Rule Theorem can be used to construct a unique particle with
period 1 and a given displacement d. Note that as a result of (2.6), we must
have 0 ≤ d ≤ r − 1.

The construction relies on the following lemma, which was stated in [7],
but with the full proof omitted. We state the lemma, give a detailed proof,
and explain how it is used in the construction of 1-periodic particles.

Lemma 3.8. Let at = · · · at0 at1 at2 · · · be the configuration at time t and let
Bt be the corresponding box indices. Then at is 1-periodic with displace-
ment d if and only if

(3.9) ati+(r−d) =

{
ati, if i+ (r − d) 6∈ Bt,

ati, if i+ (r − d) ∈ Bt.

Proof. Suppose that at is 1-periodic with displacement d. By the Fast Rule
Theorem applied on ati+r−d in reverse, it follows that

14 3. EXISTING ANALYTIC RESULTS

(3.10) ati+(r−d) =

{
at+1
i−d, if i+ r − d 6∈ Bt,

at+1
i−d, if i+ r − d ∈ Bt.

By periodicity, at+1
i−d = ati and so

ati+(r−d) =

{
ati, if i+ (r − d) 6∈ B,

ati, if i+ (r − d) ∈ B,
hence (3.9) holds.

Now suppose (3.9) holds. Again, apply the Fast Rule Theorem on
ati+(r−d) in reverse to get (3.10). Equating (3.10) and (3.9), we conclude
that ati = at+1

i−d i.e. that at is 1-periodic with displacement d. �

Using this lemma, we can construct a 1-periodic particle with displace-
ment d as follows.

Start with a0 = 1. Suppose ai = 1 for some i ∈ [1, · · · , r−d−1]. Then
by the Fast Rule Theorem we have that ai−r = 1 at the next time increment
(since 0 < i < r + 1 is not a box index). This means that i − r ≤ −d − 1
i.e. the leftmost 1 has moved at least d + 1 cells to the left in the next time
increment, which contradicts the particle a having displacement d. Hence
we must have ai = 0 for i = 1, · · · , r − d − 1 i.e. the first 1 is followed
by r − d − 1 number of 0s. Call the string a0 · · · ar−d−1 = 10 · · · 0 the
generating string. Note the case of d = r−1 results in the generating string
of a0 = 1.

Following (3.9), we must copy the generating string r − d cells to the
right, flipping the value of any cell that lie on a box index. We then copy
this possibly modified generating string r − d cells to the right again and
flip any cell that lies on a box index, and so forth.

As it turns out, this construction eventually results in a box site being
followed by r consecutive 0s. After this point, the pattern repeats, creating
a new particle identical to the former particle, but which does not interact
with the former particle. Hence we may stop the process here.

More formally, we have the following result. For a detailed proof, we
refer the reader to [7].

Theorem 3.11 (Characterization of 1-periodic particles). Fix a displace-
ment d where 0 ≤ d ≤ r− 1. Then there exists a unique 1-periodic particle

(3.12) a = a0 · · · aL
which can be constructed as follows.

LetM := lcm(r−d, r+1). Start with the string a0 · · · ar−d−1 = 10 · · · 0
and copy this string r − d cells to the right, flipping the value of a cell if it

3.3. 1-PERIODIC PARTICLES 15

lands on a box index. Take this (possibly modified) copy and again copy it
r− d cells to the right, again flipping the value of a cell if it lands on a box
index. Repeat this process until there is a box index with value 0 followed
by r consecutive 0s.

Specifically, after performing this procedure so that there are 2M
r−d in-

stances of the generating string or its modifications, the last box site will
occur at index 2M − (r + 1), have a value of 0, and be followed by r con-
secutive 0s, which signals the end of the process. The last 1 occurs at index
L = 2M − (r + 1)− (r − d).

We now provide some examples to illustrate this construction.

Example 3.13. We construct the 1-periodic particle with displacement 1
for r = 3. As r − d − 1 = 1, the generating string is 10. Following the
procedure described in (3.11) results in the particle shown in Figure 3.3.

0 2 4 6

FIGURE 3.3. The unique 1-periodic particle with d =
1, r = 3. Box indices are highlighted in blue.

The construction is performed as follows. Assume the leftmost 1 is at
index 0 as shown. The generating string 10 is copied into index 2 onwards,
then again into index 4 onwards. However, since index 4 is a box index, the
string is modified to 00. The modified string 00 is copied again into index 6
onwards. As the box index at index 4 is followed by r = 3 consecutive 0s,
the process stops.

Example 3.14. We construct the 1-periodic particle with displacement 2
for r = 4. This particle is much longer than the previous example. As
r − d − 1 = 2, the generating string is 100. The construction described in
(3.11) results in the particle given in Figure 3.4.

0 3 6 9 12 15 18 21 24 27

FIGURE 3.4. The unique 1-periodic particle with d =
2, r = 4. Box indices are highlighted in blue.

Corollary 3.15. The unique fastest moving 1-periodic particle has dis-
placement d = r − 1 and is the particle a = 1 · · · 1︸ ︷︷ ︸

r+1

0 · · · 0︸ ︷︷ ︸
r+1

.

16 3. EXISTING ANALYTIC RESULTS

3.4. General evolution theorem

The Fast Rule Theorem describes the behaviour of the parity filter rule
after a single time iteration. We now study the general evolutionary be-
haviour of the parity filter rule across multiple time iterations. To aid in the
discussions in this section, we first require the following definition.

Definition 3.16. A basic string is a string of r + 1 bits a0 · · · ar where
ai ∈ {0, 1} for i = 0, · · · , r. The set of basic strings is denoted by Xr+1

and the zero basic string is 0 := 0 · · · 0︸ ︷︷ ︸
r+1

∈ Xr+1.

Any configuration at can be written in terms of b-strings

(3.17) at = · · · 0At0 · · ·Atµ0 · · ·

where Ai ∈ Xr+1 for i = 0, · · · , µ, the first bit of At0 is 1, and Atµ 6= 0.
In the remainder of this section, we introduce a slight notational change

as per [7] by shifting indices and cells r units to the right at each successive
time iteration. In doing so, successive time iterations of the parity filter
rule can be computed by simply copying the bits from the previous time
iteration and flipping the values at all box indices. We also consider only
single particles, and assume no splitting occurs.

The following example provides the motivation for the main result in
this section.

Example 3.18. We first demonstrate the significance of the index shift and
basic strings in Figure 3.5. An initial configuration and its three subsequent
time iterations are shown.

The basic strings are delineated visually with spaces, so for example,
the initial configuration as indicated by the top row, is the configuration

100010101010001,

where we have ignored the 0s to the left and right.
Box indices at each time step are highlighted in blue. The delineation

of basic strings makes it easy to see that at any given time, the box indices
fall within the same local index for each basic string.

Due to the shift in indexing, successive iterations of the parity filter
rule can be computed by simply flipping the values of cells located at box
indices.

3.4. GENERAL EVOLUTION THEOREM 17

At0 At1 At2 At3 At4 At5

FIGURE 3.5. Iterations of the parity filter rule r = 5. In-
dices are shifted r units to the right each time iteration, basic
strings are labelled and delineated with spaces, and box in-
dices are highlighted in blue.

As time progresses, basic strings on the left evolve to the 0 string, and
the original string reappears on the right. For instance the string A0

0 evolves
to A2

0 = 0 by time t = 2, but at the same time A0
3 = 0 evolves to A2

3 = A0
0.

To understand this more precisely, let `(t) denote the local index of the
first 1 in the leftmost nonzero string. Note that, as a result of the alignment
of basic strings and the assumption that no splitting occurs, all box indices
at time t occur at local index `(t) within their respective strings.

For example, referring back to Figure 3.5, we have `(0) = 0 because
the box indices at time t = 0 occur in local index 0. We also have `(1) = 4
because the box indices at time t = 1 occur in local index 4. Similarly,
`(2) = 2 and `(3) = 0.

Let fi :Xr+1−→Xr+1 be the transformation that flips the bit in index i
i.e. if A = x0 · · ·xi · · ·xr ∈ Xr+1 then fi(A) = x0 · · · xi · · · xr ∈ Xr+1.

Then the strings at time t = 1 are related to the strings at time t = 0 by

A1
i = f`(0)(A

0
i)

= f0(A
0
i)

for 0 ≤ i ≤ 3.
Similarly, for strings at time t = 2 we have

A2
i = f`(1)f`(0)(A

0
i)

= f4f0(A
0
i)

for 0 ≤ i ≤ 4.
In other words, the strings A2

i for 0 ≤ i ≤ 4 at time t = 2 can be
computed as follows.

Consider the local indices corresponding to the cells with value 1 in the
leftmost nonzero string at time t = 0, namely the string A0

0 = 100010.
These indices are {0, 4}.

To compute A2
i , take the corresponding string A0

i at time t = 0 and flip
the value of the cells falling on local indices {0, 4}.

18 3. EXISTING ANALYTIC RESULTS

With this process, it is evident that the string A0
0 evolves to A2

0 = 0 by
time t = 2 since f4f0(100010) = 0. Also, A0

3 = 0 evolves to A2
3 = A0

0 by
time t = 2 since f4f0(0) = 100010.

Similar behaviour is evident between strings at time t = 2 and strings
at time t = 3, namely that

A3
i = f`(2)(A

2
i)

for 1 ≤ i ≤ 4.
With analogous reasoning to before we see that A2

1 evolves to A3
1 = 0,

and that A2
4 evolves to A3

4 = A2
1. Furthermore, we see that A2

3 evolves to
A3

3 = A0
1.

In general, we see that whenever a string on the left is zeroed out (in
this example at time t = 2 and t = 3), the corresponding string appears on
the right.

This motivates the following definition.

Definition 3.19. The landmark time τi is the smallest time for which the
leftmost 1 is inside the basic string Ai.

That is, at time t = τi, we have that Aj = 0 for all j < i, and Ai 6= 0.
Moreover this is the minimum such time that this occurs.

We define τ0 := 0.

Example 3.20. Following on from Example 3.18, the landmark times are
τ0 = 0, τ1 = 2, τ2 = 3.

We can formalize the behaviour observed in Example 3.18 as follows.
Let the configuration of the automaton at time t be

at = · · · 0 Atk · · ·Atµ 0 · · ·
Let `(t) denote the local index of the first 1 in Atk and let λ(t) denote the
local index of the last 1 in Atµ. Let fi :Xr+1−→Xr+1 be defined as above.

Then the following holds, provided that no splitting occurs:

(3.21) at+1 =

{
· · · 0 f`(t)(At0) · · · f`(t)(Atµ) f`(t)(0) 0 · · · if `(t) < λ(t)

· · · 0 f`(t)(At0) · · · f`(t)(Atµ) 0 · · · if `(t) ≥ λ(t)

Furthermore, it turns out the condition `(t) < λ(t) occurs if and only if
t is a landmark time.

Through repeated application of (3.21), one can show the following re-
sult, which predicts the general evolutionary behaviour of a particle. For a
detailed proof, we refer the reader to [7].

Theorem 3.22 (General Evolution Theorem). Let the initial configuration
of a single particle

a0 = · · · 0A0
0 · · ·A0

µ0 · · ·

3.4. GENERAL EVOLUTION THEOREM 19

be defined so that A0
0 begins with a 1, A0

i 6= 10 · · · 0 for i = 0, · · · , µ and
A0
µ 6= 0. Define

F0 := I, Ft := f`(t−1) · · · f`(0) for t > 0

where I :Xr+1−→Xr+1 is the identity transformation.
Then the configuration at time t = T where τn < T ≤ τn+1 is

(3.23)
aT = · · · 0 FT (A0

n) FT (A
0
n+1) · · ·FT (A0

µ) Fτ0FT (0) Fτ1FT (0) · · ·Fτn−1FT (0) 0 · · · .
In particular, the configuration at landmark times t = τn is
(3.24)
aτn = · · · 0 Fτn(A0

n) Fτn(A
0
n+1) · · ·Fτn(A0

µ) Aτ0n−1 A
τ1
n−1 · · ·A

τn−1

n−1 0 · · · .
It is assumed throughout that no splitting occurs for 0 < t < T and that the
initial configuration t = 0 is advanced if necessary to ensure that 0 ≤ n ≤
µ.

An easy consequence of the general evolution theorem is the following
result.

Theorem 3.25. Any particle consisting of one basic string A0
0 6= 10 · · · 0 is

periodic with period p ≤ τ1, the number of 1s in A0
0.

Proof. Let a0 = · · · 0 A0
0 0 · · · . Since there are at least two 1s in A0

0, no
splitting occurs, hence we can apply the General Evolution Theorem at time
t = τ1 to obtain

aτ1 = · · · 0 Fτ1(A0
0) F (0) 0 · · ·

= · · · 0 0 A0
0 0 · · · .

(3.26)

�

CHAPTER 4

Basic strings and a generalized parity filter rule

In this chapter we study a generalization of the parity filter rule. To the
best of our knowledge, the results shown here are original.

We initially studied the rule given by

(4.1) at+1
i =

{
1, if St+1

i ≥ 4 and is even,
0, otherwise.

This was motivated by brief comments made in [8] that particles under this
rule demonstrate similar behaviour to the original parity filter rule.

We derived a series of results under this rule that turned out to also hold
for the more general rule given by

(4.2) at+1
i =

{
1, if St+1

i ≥ 2q and is even,
0, otherwise.

We refer to this as the generalized parity filter rule, which now has two
parameters q, r. The results we derived for the generalized parity filter rule
are presented in this section.

Note that the rule in (4.1) is a special case where 2q = 4. Furthermore,
the original parity filter rule is a special case where 2q = 2.

4.1. Alternative characterization

Our main result is an alternative characterization of the generalized par-
ity filter rule (4.2) for configurations described by basic strings. Recall that
a basic string is a sequence of bits of length r + 1. We further assume that
the first element of the string is nonzero.

We show that the evolution of basic strings under the generalized parity
filter rule can be computed as a limited cyclical shift, and that all basic
strings are periodic. We provide an explicit formula to calculate the period
and displacement of any basic string.

Before stating the result, we first provide a few examples of basic strings
and their time evolution, as given in Figure 4.1.

20

4.1. ALTERNATIVE CHARACTERIZATION 21

(A) (B)

FIGURE 4.1. Evolution of two different basic strings under
the rule 2q = 4, r = 6.

Notice that from a given configuration at time t, we can compute the
configuration at the next time iteration t+ 1 as follows:

(1) Copy the configuration of cells at time t into that of time t+ 1.
(2) Take the first three cells with value 1 and place them at the end

of the string i.e. so that a0 is at index r + 1 = 7, a1 is at index
r + 2 = 8, etc. assuming that a0 is the first nonzero cell.

(3) Move everything r = 6 units to the left.
In general, the following result holds.

Theorem 4.3. Suppose the configuration at time t is given by

at = · · · 0 a0 · · · ar 0 · · ·
where a0 = 1 and

∑r
i=0 ai ≥ 2q. Let j denote the index of the (2q − 1)st 1

i.e. aj = 1 and
∑j

i=0 ai = 2q − 1.
Then the configuration at time t+ 1 produced by the generalized parity

filter rule is given by

(4.4) at+1
i =

ati+r, if j − r + 1 ≤ i ≤ 0,
ati−1, if 1 ≤ i ≤ j + 1,
0, otherwise i.e. if i ≤ j − r or i ≥ j + 2.

In other words, the configuration at time t+ 1 can be found as follows:
(1) Copy the configuration of cells at time t into that of time t+ 1.
(2) Take the first 2q− 1 cells with value 1 and place them at the end of

the string i.e. so that a0 is at index r + 1, a1 is at index r + 2, etc.
(3) Move everything r units to the left.

Proof. First, note that since there are at least 2q number of 1s, we must have
j ≤ r − 1.

We will make repeated reference to the update window W (i) defined as

ati · · · ati+r
at+1
i−r · · ·at+1

i .

22 4. BASIC STRINGS AND A GENERALIZED PARITY FILTER RULE

We split the proof case by case.
Case 1: at+1

i = 0 for i ≤ j − r.
For i � j − r we have St+1

i = 0 hence (4.4) holds. Now assume
(4.4) holds for all i′ ≤ i where i ≤ j − r − 1. Consider the sum St+1

i+1

corresponding to the cell at+1
i+1, given by

St+1
i+1 =

i∑
n=i+1−r

at+1
n +

i+r+1∑
n=i+1

atn

= 0 +
i+r+1∑
n=i+1

atn(by inductive hypothesis)

≤ 2q − 1.(since i+ r + 1 ≤ j)

Hence at+1
i+1 = 0 and (4.4) holds.

Case 2: at+1
i = ati+r for j − r + 1 ≤ i ≤ 0.

We will show that for all j − r + 1 ≤ i ≤ 0 the number of 1s in the
update windowW (i) (given by St+1

i +at+1
i) is odd and greater than or equal

to 2q − 1.
First, consider if i = j − r + 1. The sum St+1

j−r+1 corresponding to cell
at+1
j−r+1 is given by

St+1
j−r+1 =

j−r∑
n=j−2r+1

at+1
n +

j+1∑
n=j−r+1

atn

= 0 +

j+1∑
n=j−r+1

atn(since atn < 0 for n < 0)

= 0 +

j+1∑
n=0

atn(by case 1)

= 2q − 1 + atj+1.(by definition of j)

If atj+1 = 1 then St+1
j−r+1 = 2q hence at+1

j−r+1 = 1 = atj+1 and (4.4) holds.
The number of 1s in the update window W (j − r + 1) is 2q + 1 ≥ 2q − 1
and 2q + 1 is odd. On the other hand, if atj+1 = 0 then St+1

j−r+1 = 2q − 1

and so at+1
j−r+1 = 0 = atj+1 and (4.4) holds. The number of 1s in the update

window W (j − r + 1) is 2q − 1 ≥ 2q − 1 and 2q − 1 is odd.
Now suppose that for some i where j − r+ 1 ≤ i ≤ −1, the number of

1s in the update windowW (i) is odd and greater or equal to 2q−1, and that
(4.4) holds. Consider the combined update windows W (i) and W (i+1) as
follows:

4.1. ALTERNATIVE CHARACTERIZATION 23

ati at
i+1· · · at

i+r a
t
i+r+1

at+1
i−r a

t+1
i−r+1· · · a

t+1
i at+1

i+1.

The region shared by both W (i) and W (i + 1) is bolded. The update
windows differ only in that for W (i+ 1), the cells ati and at+1

i−r are replaced
with ati+r+1 and at+1

i+1. The 1s in the update window W (i) cannot appear in
the cells ati and at+1

i−r . To see this, first observe that i ≤ −1 so ati = 0. Then
also at+1

n−r = 0 whether by case 1 or case 2. Hence the 1s in W (i) must lie
in the shared (bolded) region. It follows that St+1

i+1 − ati+r+1 ≥ 2q− 1 and is
odd.

Similar to before, if ati+r+1 = 1 then St+1
i+1 ≥ 2q is even and so at+1

i+1 =
1 = ati+r+1. The number of 1s in W (i + 1) is odd and greater or equal to
2q + 1 ≥ 2q − 1. On the other hand, if ati+r+1 = 0 then St+1

i+1 ≥ 2q − 1 is
odd and so at+1

i+1 = 0 = ati+r+1. The number of 1s in W (i + 1) is odd and
greater or equal to 2q − 1.

Case 3: at+1
i = ati−1 for 1 ≤ i ≤ j + 1.

Here the sum St+1
i corresponding to cell at+1

i is given by

St+1
i =

i−1∑
n=i−r

at+1
n +

i+r∑
n=i

atn

=
i−1∑

n=j−r+1

at+1
n +

i+r∑
n=i

atn(by case 1)

=
r∑

n=j+1

atn +
i−1∑
n=1

at+1
n +

i+r∑
n=i

atn(by case 2)

=
r∑

n=j+1

atn +
i−1∑
n=1

at+1
n +

r∑
n=i

atn.(since atn = 0 for n ≥ r + 1)

If i = 1 then we have

St+1
1 =

r∑
n=j+1

atn +
r∑

n=1

atn

=

j∑
n=1

atn + 2
r∑

n=j+1

atn

= (2q − 2) + 2
r∑

n=j+1

atn.

24 4. BASIC STRINGS AND A GENERALIZED PARITY FILTER RULE

Since
∑r

n=0 a
t
n = 2q we have that

∑r
n=j+1 ≥ 1 by definition of j and so

S ≥ 2q and is even. Hence at+1
1 = 1 = at0 and so (4.4) holds for i = 1.

Now assume (4.4) holds for all i′ ≤ i for some i where 1 ≤ i ≤ j. Then
we have

St+1
i+1 =

r∑
n=j+1

atn +
i∑

n=1

at+1
n +

r∑
n=i+1

atn

=
r∑

n=j+1

atn +
i−1∑
n=0

atn +
r∑

n=i+1

atn(by case 3)

=

(
i−1∑
n=0

atn +

j∑
n=i+1

atn

)
+ 2

r∑
n=j+1

atn

= (2q − 1− ati) + 2
r∑

n=j+1

atn.

If ati = 0 then St+1
i+1 is odd so at+1

i+1 = 0 = ati and (4.4) holds. On the other
hand, if ati = 1 then St+1

i+1 is even, and moreover, since
∑r

n=j+1 a
t
n ≥ 1 we

must have that St+1
i+1 ≥ 2q. Hence at+1

i+1 = 1 = ati and (4.4) holds.
Case 4: at+1

i = 0 for j + 2 ≤ i ≤ r.
Here we have

St+1
i =

i−1∑
n=i−r

at+1
n +

i+r∑
n=i

atn

=
i−1∑

n=i−r

at+1
n +

r∑
n=i

atn

(since atn = 0 for n ≥ r + 1)

=
r∑
n=i

atn +
i−1∑
n=1

at+1
n +

r∑
n=i

atn(by case 2)

=
r∑
n=i

atn +

j∑
n=0

atn +
i−1∑

n=j+2

at+1
n +

r∑
n=i

atn(by case 3)

= 2
r∑
n=i

atn + (2q − 1) +
i−1∑

n=j+2

at+1
n .

If i = j + 2 then St+1
i = 2q − 1 + 2

∑r
n=i a

t
n which is odd, hence at+1

i = 0
and (4.4) holds.

4.1. ALTERNATIVE CHARACTERIZATION 25

Now assume (4.4) holds for all i′ ≤ i for some iwhere j+2 ≤ i ≤ r−1.
Then we have

St+1
i+1 = 2

r∑
n=i+1

atn + (2q − 1) +
i∑

n=j+2

at+1
n

= 2
r∑

n=i+1

atn + (2q − 1) + 0

which is again odd, hence at+1
i = 0 and (4.4) holds.

Case 5: at+1
i = 0 for r + 1 ≤ i.

Here we have

St+1
i =

i−1∑
n=i−r

at+1
n +

i+r∑
n=i

atn

=
i−1∑

n=i−r

at+1
n(atn = 0 for n ≥ r + 1)

=

j∑
n=i−r−1

atn +
i−1∑

n=j+2

at+1
n(by case 3)

=

j∑
n=i−r−1

atn + 0 +
i−1∑

n=r+1

at+1
n(by case 4)

If i = r + 1 then St+1
i =

∑j
n=0 a

t+1
n = 2q − 1 hence at+1

i = 0 and (4.4)
holds.

Now assume (4.4) holds for all i′ ≤ i for some i where r + 1 ≤ i. Then

St+1
i =

j∑
n=i−r

at+1
n +

i∑
n=r+1

at+1
n

≤ (2q − 1) + 0,

hence at+1
i = 0 and (4.4) holds. �

Remark 4.5. The procedure described in (4.4) can be thought of as a lim-
ited cyclical shift by r units to the left, in the following sense.

(1) All cells are shifted to the left one unit at a time up to a total of r
units, subject to the following constraint.

(2) The first (2q − 1) 1s that are shifted to the left of index 0 are re-
moved and reappear on the right at index r. Subsequent 1s shift to
the left of index 0 as normal.

26 4. BASIC STRINGS AND A GENERALIZED PARITY FILTER RULE

4.2. Periodicity

Using (4.4) we will show that all basic strings are periodic under the
generalized parity filter rule.

Firstly, it is easy to see that the procedure described in (4.5) does not
create or remove any 1s, hence the following result holds.

Corollary 4.6. The number of 1s in the evolution of a basic string is con-
stant.

Note that (4.6) already implies that all basic strings are periodic as there
are a finite number of 1s and only a finite number of ways to rearrange them.
However, we can provide a stronger bound on the period, as we state in the
following result.

Corollary 4.7. A basic string is periodic with period p ≤ k.

Proof. Since altering the relative positions of two strings does not change
their periodicity, we may ignore the first step in (4.5) and only consider
the second step. After k iterations of the second step, a total of (2q − 1)k
number of 1s have been shifted to the left of index 0 and have reappeared
on the right. Since there are k number of 1s in the string, the resulting string
must be the same as the original string. �

Remark 4.8. In the proof of Corollary 4.7, we only require that a multiple
of k number of 1s be shifted past the left of index 0 in order for the original
string to reappear. Hence at any t > 0 satisfying

(4.9) (2q − 1)t ≡ 0 mod k,

the original string will reappear. The smallest t > 0 satisfying (4.9) is given
by

(4.10) t =
k

gcd(k, 2q − 1)
,

hence we may take the period to be p ≤ k
gcd(k,2q−1) .

Note that, however, p = k
gcd(k,2q−1) is not necessarily the minimal pe-

riod. It may be the case that at some t′ < k
gcd(k,2q−1) , we have (2q−1)t′ 6≡ 0

mod k yet the original string reappears, due to symmetry in the string.
An example of this with the rule 2q = 4, r = 4 is illustrated in Fig-

ure 4.2. The particle has period 1 < k
gcd(k,2q−1) = 5.

4.3. DISPLACEMENT 27

FIGURE 4.2. An example of the evolution of a basic string
under the rule 2q = 4, r = 4 where the period p <

k
gcd(k,2q−1) .

4.3. Displacement

We now study the displacement of a basic string over its period. Let a =
a0 · · · ar be a basic string where a0 = 1 with period p = k :=

∑r
i=0 ai ≥ 2q.

Let jn for 0 ≤ n ≤ k − 1 denote the index of the (n + 1)st 1 i.e. ajn = 1

and
∑jn

i=0 ai = n + 1. For ease of notation later on, define jn := jn mod k

for n ≥ k. Define

f(x, y) :=

{
jy − jx, if jy ≥ jx,
jy − jx + (r + 1), otherwise.

In other words, f(x, y) counts the number of cells required to start from the
(x+1)st 1, and move right to reach the (y+1)st 1 such that the cell indices
are treated as mod r + 1 i.e. counting past the right of index r wraps back
around to index 0.

Let dt+1 denote the left displacement of the leftmost 1 from time t to
time t + 1. During this time, all cells have been shifted r units to the left,
except the first (2q − 1) 1s which have been cycled to the back. Hence the
ith 1 at time t corresponds to the (i + (2q − 1)t)th 1 in the original string,
assuming that counting past the kth 1 loops back to the start of the string.
The leftmost 1 at time t + 1 corresponds to the fourth 1 at time t which is
f((2q − 1)t, (2q − 1)(t + 1)) cells to the right of the leftmost 1 at time t.
Hence dt+1 = r − f((2q − 1)t, (2q − 1)(t+ 1)).

Since a is periodic with period k then the configuration at time t = 0
and t = k must be the same, ignoring any displacement. The displacement
d can then be calculated by the displacement of the leftmost 1 between these

28 4. BASIC STRINGS AND A GENERALIZED PARITY FILTER RULE

two points in time which is given by

d =
k∑
t=1

dt

=
k∑
t=1

(r − f((2q − 1)(t− 1), (2q − 1)t))

= rk −
k∑
t=1

f((2q − 1)(t− 1), (2q − 1)t)

= rk − (2q − 1)(r + 1).

The equality
∑k

t=1 f((2q− 1)(t− 1), (2q− 1)t) = (2q− 1)(r+1) follows
from the fact that there are k number of 1s distributed across a string of
length r + 1.

This proves the following.

Theorem 4.11. Let a = a0 · · · ar be a basic string with a0 = 1 and k :=∑r
i=0 ai ≥ 2q. Under the generalized parity filter rule, the particle a is

periodic with period p = k and displacement d = rk − (2q − 1)(r + 1).

Example 4.12. Two examples of basic strings under the rule 2q = 6, r = 8
are given in Figure 4.3.

(A) (B)

FIGURE 4.3. Two examples of basic strings under the rule
2q = 6, r = 8.

In Figure 4.3a we have k = 7 hence by (4.11) the particle is periodic
with period p = 7 and left displacement 8 · 7 − 5 · 9 = 11. In Figure 4.3b
we have k = 6 hence the particle is periodic with period p = 6 and left
displacement 8 · 6− 5 · 9 = 3. The reader is invited to verify these results.

4.4. Connection to the original parity filter rule

The special case of 2q = 2 gives the original parity filter rule. Applying
(4.11) for 2q = 2 gives an alternate proof of (3.25). We can further calculate

4.4. CONNECTION TO THE ORIGINAL PARITY FILTER RULE 29

the displacement of the string as d = rk − (r + 1), which agrees with the
displacement observed in (3.26).

We also see that (4.3) for 2q = 2 is a special case of the Fast Rule
Theorem applied to basic strings.

Bibliography

[1] C. Bays. “Cellular Automata in Triangular, Pentagonal and Hexago-
nal Tessellations”. Encyclopedia of Complexity and Systems Science.
Ed. by R. A. Meyers. New York, NY: Springer New York, 2009,
pp. 892–900. ISBN: 978-0-387-30440-3. DOI: 10.1007/978-0-
387-30440-3_58. URL: https://doi.org/10.1007/
978-0-387-30440-3_58.

[2] J. Conway. “The game of life”. Scientific American 223.4 (1970),
p. 4.

[3] M. Cook. “Universality in elementary cellular automata”. Complex
systems 15.1 (2004), pp. 1–40.

[4] J. Greenberg, B. Hassard, and S. Hastings. “Pattern formation and
periodic structures in systems modeled by reaction-diffusion equa-
tions”. Bulletin of the American Mathematical Society 84.6 (1978),
pp. 1296–1327.

[5] C. Ormerod. “Cellular automata model of HIV infection on tilings of
the plane”. Proceedings of the 7th Asia-Pacific Conference on Com-
plex Systems. 2004.

[6] T. Papatheodorou, M. Ablowitz, and Y. G. Saridakis. “A rule for fast
computation and analysis of soliton automata”. Studies in Applied
Mathematics 79.2 (1988), pp. 173–184.

[7] T. Papatheodorou and A. Fokas. “Evolution theory, periodic particles,
and solitons in cellular automata”. Studies in Applied Mathematics
80.2 (1989), pp. 165–182.

[8] J. K. Park, K. Steiglitz, and W. P. Thurston. “Soliton-like behavior in
automata”. Physica D: Nonlinear Phenomena 19.3 (1986), pp. 423–
432.

[9] T. Tokihiro et al. “From soliton equations to integrable cellular au-
tomata through a limiting procedure”. Physical Review Letters 76.18
(1996), p. 3247.

[10] S. Wolfram. A new kind of science. Vol. 5. Wolfram media Cham-
paign, IL, 2002.

[11] S. Wolfram. “Cryptography with Cellular Automata”. Advances in
Cryptology — CRYPTO ’85 Proceedings. Ed. by H. C. Williams.

30

BIBLIOGRAPHY 31

Springer Berlin Heidelberg, 1986, pp. 429–432. ISBN: 978-3-540-
39799-1.

[12] S. Wolfram. “Random sequence generation by cellular automata”.
Advances in applied mathematics 7.2 (1986), pp. 123–169.

[13] S. Wolfram. “Statistical mechanics of cellular automata”. Reviews of
modern physics 55.3 (1983), p. 601.

[14] J. T. Wootton. “Local interactions predict large-scale pattern in empir-
ically derived cellular automata”. Nature 413.6858 (2001), pp. 841–
844.

